52 research outputs found

    On the Relay-Fallback Tradeoff in Millimeter Wave Wireless System

    Full text link
    Millimeter wave (mmWave) communications systems are promising candidate to support extremely high data rate services in future wireless networks. MmWave communications exhibit high penetration loss (blockage) and require directional transmissions to compensate for severe channel attenuations and for high noise powers. When blockage occurs, there are at least two simple prominent options: 1) switching to the conventional microwave frequencies (fallback option) and 2) using an alternative non-blocked path (relay option). However, currently it is not clear under which conditions and network parameters one option is better than the other. To investigate the performance of the two options, this paper proposes a novel blockage model that allows deriving maximum achievable throughput and delay performance of both options. A simple criterion to decide which option should be taken under which network condition is provided. By a comprehensive performance analysis, it is shown that the right option depends on the payload size, beam training overhead, and blockage probability. For a network with light traffic and low probability of blockage in the direct link, the fallback option is throughput- and delay-optimal. For a network with heavy traffic demands and semi-static topology (low beam-training overhead), the relay option is preferable.Comment: 6 pages, 5 figures, accepted in IEEE INFOCOM mmNet Worksho

    Secure Platform Over Wireless Sensor Networks

    Get PDF
    Life sciences: general issue

    A Comprehensive Framework for Performance Analysis of Cooperative Multi-Hop Wireless Systems over Log-Normal Fading Channels

    No full text
    International audienceIn this paper, we propose a comprehensive framework for performance analysis of multi–hop multi–branch wireless communication systems over Log–Normal fading channels. The framework allows to estimate the performance of Amplify and Forward (AF) relay methods for both Channel State Information (CSI–) assisted relays, and fixed–gain relays. In particular, the contribution of this paper is twofold: i) first of all, by relying on the Gauss Quadrature Rule (GQR) representation of the Moment Generation Function (MGF) for a Log–Normal distribution, we develop accurate formulas for important performance indexes whose accuracy can be estimated a priori and just depends on GQR numerical integration errors; ii) then, in order to simplify the computational burden of the former framework for some system setups, we propose various approximations, which are based on the Improved Schwartz–Yeh (I–SY) method. We show with numerical and simulation results that the proposed approximations provide a good trade–off between accuracy and complexity for both Selection Combining (SC) and Maximal Ratio Combining (MRC) cooperative diversity methods

    Distributed Localization Algorithms for Wireless Sensor Networks: From Design Methodology to Experimental Validation

    Get PDF
    Recent advances in the technology of wireless electronic devices have made possible to build ad–hoc Wireless Sensor Networks (WSNs) using inexpensive nodes, consisting of low–power processors, a modest amount of memory, and simple wireless transceivers. Over the last years, many novel applications have been envisaged for distributed WSNs in the area of monitoring, communication, and control. Sensing and controlling the environment by using many embedded devices forming a WSN often require the measured physical parameters to be associated with the position of the sensing device. As a consequence, one of the key enabling and indispensable services in WSNs is localization (i.e., positioning). Moreover, the design of various components of the protocol stack (e.g., routing and Medium Access Control, MAC, algorithms) might take advantage of nodes’ location, thus resulting in WSNs with improved performance. However, typical protocol design methodologies have shown signiï¬cant limitations when applied to the ï¬eld of embedded systems, like WSNs. As a matter of fact, the layered nature of typical design approaches limits their practical usefulness for the design of WSNs, where any vertical information (like, e.g., the actual node’s position) should be efï¬ciently shared in such resource constrained devices. Among the proposed solutions to address this problem, we believe that the Platform–Based Design (PBD) approach Sangiovanni-Vincentelli (2002), which is a relatively new methodology for the design of embedded systems, is a very promising paradigm for the efï¬cient design of WSNs

    Timing Acquisition Performance Metrics of Tc-DTR UWB Receivers over Frequency-Selective Fading Channels with Narrow-Band Interference: Performance Analysis and Optimization

    No full text
    International audienceThe successful deployment of Impulse Radio (IR) Ultra Wide Band (UWB) wireless communication systems requie that they coexist and contend with a variety of interfering signals co–located over the same transmission band. In fact, if on the one hand the large transmission bandwidth of IR–UWB signals allows them to resolve multipath components and exploit multipath diversity, on the other hand it yields some new coexistence challenges for both unlicensed commercial and military communication systems, which are required to be robust to unintentional and intentional jammers, respectively. In particular, the design and analysis of low–complexity receiver schemes with good synchronization capabilities and high robustness to Narrow–Band Interference (NBI) is acknowledged as an important issue in IR–UWB research. Motivated by this consideration, in [1] we have recently proposed a low–complexity receiver design, the so–called Chip–Time Differential Transmitted–Reference (Tc–DTR) scheme, and have shown that it is more robust to NBI than other non–coherent receiver schemes available in the literature. In this paper, we aim at generalizing the results in [1] and at developing the enabling analytical tools for the analysis and design of timing acquisition algorithms for non–coherent receivers over frequency–selective fading channels with NBI. Furthermore, we move from the proposed analytical framework to tackle the optimization problem of devising optimal signature codes to reduce the impact of NBI on the performance of the Tc–DTR synchronizer. Analytical frameworks and findings are substantiated via Monte Carlo simulations

    Performance Analysis and Optimization of Tc-DTR IR-UWB Receivers over Multipath Fading Channels with Tone Interference

    No full text
    International audienceIn this paper, we analyze the performance of a particular class of transmitted-reference receivers for impulse radio ultra wideband communication systems, which is called chip-time differential transmitted-reference (Tc-DTR). The analysis aims at investigating the robustness of this receiver to single-tone and multi-tone narrowband interference (NBI) and comparing its performance with other non-coherent receivers that are proposed in the literature. It is shown that the Tc-DTR scheme provides more degrees of freedom for performance optimization and that it is inherently more robust to NBI than other non-coherent receivers. More specifically, it is analytically proved that the performance improvement is due to the chip-time-level differential encoding/decoding of the direct sequence (DS) code and to an adequate design of DS code and average pulse repetition time. The analysis encompasses performance metrics that are useful for both data detection (i.e., average bit error probability) and timing acquisition (i.e., false-alarm probability Pfa and detection probability Pd). Moving from the proposed sem-analytical framework, the optimal code design and system parameters are derived, and it is highlighted that the same optimization criteria can be applied to all the performance metrics considered in this paper. In addition, analytical frameworks and theoretical findings are substantiated through Monte Carlo simulations

    Entity Localization and Tracking: A Sensor Fusion-based Mechanism in WSNs

    No full text
    International audienceKnowing exactly where a mobile entity is and monitoring its trajectory in real-time has recently attracted a lot of interests from both academia and industrial communities, due to the large number of applications it enables; nevertheless, it is nowadays one of the most challenging problems from scientific and technological standpoints. In this work we propose a tracking system based on the fusion of position estimations provided by different sources, that are combined together to get a final estimation that aims at providing improved accuracy with respect to those generated by each system individually. In particular, exploiting the availability of a Wireless Sensor Network as an infrastructure, a mobile entity equipped with an inertial system first gets the position estimation using both a Kalman Filter and a fully distributed positioning algorithm (the Enhanced Steepest Descent, we recently proposed), then combines the results using the Simple Convex Combination algorithm. Simulation results clearly show good performance in terms of the final accuracy achieved. Finally, the proposed technique is validated against real data taken from an inertial sensor provided by THALES ITALIA
    • …
    corecore